Taylor Series Expansion in Discrete Clifford Analysis
نویسندگان
چکیده
منابع مشابه
Taylor Expansion of an Eisenstein Series
In this paper, we give an explicit formula for the first two terms of the Taylor expansion of a classical Eisenstein series of weight 2k + 1 for Γ0(q). Both the first term and the second term have interesting arithmetic interpretations. We apply the result to compute the central derivative of some Hecke L-functions. 0. Introduction. Consider the classical Eisenstein series ∑ γ∈Γ∞\ SL2(Z) Im(γτ)...
متن کاملEvaluation and Design of Filters Using a Taylor Series Expansion
We describe a new method for analyzing, classifying, and evaluating filters that can be applied to interpolation filters as well as to arbitrary derivative filters of any order. Our analysis is based on the Taylor series expansion of the convolution sum. Our analysis shows the need and derives the method for the normalization of derivative filter weights. Under certain minimal restrictions of t...
متن کاملTuning of FOPID Controller Using Taylor Series Expansion
In this paper, a direct synthesis approach to fractional order controller design Is investigated. The proposed algorithm makes use of Taylor series of both desired closed-loop and actual closed-loop transfer function which is truncated to the first five terms. FOPID Controller parameters are synthesized in order to match the closed-loop response of the plant to the desired closed-loop response....
متن کاملOn the Approximation of Delayed Systems by Taylor Series Expansion
It is known that stability properties of delay-differential equations are not preserved by Taylor series expansion of the delayed term. Still, this technique is often used to approximate delayed systems by ordinary differential equations in different engineering and biological applications. In this brief, it is demonstrated through some simple second-order scalar systems that low-order Taylor s...
متن کاملNUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION
In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Analysis and Operator Theory
سال: 2013
ISSN: 1661-8254,1661-8262
DOI: 10.1007/s11785-013-0298-2